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We consider the effect of weak disorder on eigenstates in a special class of tight-binding models. Models in
this class have short-range hopping on periodic lattices; their defining feature is that the clean systems have
some energy bands that are dispersionless throughout the Brillouin zone. We show that states derived from
these flat bands are generically critical in the presence of weak disorder, being neither Anderson localized nor
spatially extended. Further, we establish a mapping between this localization problem and the one of reso-
nances in random impedance networks, which previous work has suggested are also critical. Our conclusions
are illustrated using numerical results for a two-dimensional lattice, known as the square lattice with crossings
or the planar pyrochlore lattice.
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I. INTRODUCTION

Hopping problems on certain frustrated lattices have the
unusual feature that some of their energy bands are disper-
sionless. Systems of this kind have been studied in several
different contexts, including both itinerant ferromagnetism
within the Hubbard model1,2 and frustrated antiferromag-
netism within the Heisenberg model.3,4 In the first of these
examples, the divergent density of states for a flat band sta-
bilizes ferromagnetic order by ensuring that the Stoner crite-
rion is satisfied. In the second example, the existence of a flat
band in the hopping problem is closely linked to macro-
scopic ground-state degeneracy in a classical antiferromagnet
defined on the same lattice.

The degeneracy of states in dispersionless bands is easily
lifted by perturbations. In this paper we examine the effect of
one such perturbation: a weak random potential. For a flat
band of the clean lattice, weak disorder sets the only energy
scale and controls the localization properties of eigenstates.
Previous work in this area,5,6 while identifying the weak-
disorder limit as interesting, has focused mainly on Anderson
transitions occurring at finite disorder strength. We expect
transitions occurring at finite disorder strength to be in the
same universality class as those on unfrustrated lattices and
anticipate that special features of flat-band localization occur
only in the weak-disorder limit.

The weak-disorder flat-band localization problem shares
an obvious feature with the one of Anderson localization in
integer quantum-Hall systems, in the sense that a Landau
level can be viewed as a continuum analog of a flat band. For
a Landau level, a property of the projection operator onto the
level, its nonzero Chern number, ensures that disorder cannot
localize all states.7 Remarkably, we find for frustrated hop-
ping problems that localization is also controlled by a feature
of the projection operator onto the flat band. In the cases we
are concerned with, its matrix elements in real space decay
as a power law of separation, and this power is equal to the
spatial dimension. As a consequence, a random potential pro-
jected onto the flat band gives rise to a localization problem
similar to one in which the magnitude of hopping matrix
elements between distant sites decreases as a power of their

separation. A system of this kind is known to be critical
when the power is the same as the spatial dimension,8,9 and
the one-dimensional case of power-law banded random ma-
trices has been studied extensively.10 On these grounds, we
expect eigenstates in frustrated tight-binding models with
weak disorder to be critical, and we use a numerical study of
their multifractal properties to demonstrate this for a two-
dimensional example. Separately, we show that the flat-band
localization problem can be mapped onto the problem of
resonances occurring in random impedance networks, for
which eigenfunctions have also been found to be critical in
an earlier numerical study.11

While our exclusive focus here is on flat-band localiza-
tion, this problem has close links to a number of other topics
of current interest. The most direct connection is to a geo-
metrically frustrated antiferromagnet that has its spins polar-
ized by a strong applied field: its single spin-flip excitations
are described by a frustrated hopping Hamiltonian12,13 and in
the presence of weak disorder may exhibit the features we
discuss in this paper �although the form of disorder we treat
is site diagonal while randomness in the strength of exchange
interactions would appear as off-diagonal disorder�. More
generally, the mathematics of flat bands is closely linked to
the physics of Coulomb phases14 in classical statistical me-
chanical systems, notably dimer models15 and frustrated
magnets.16 There has recently been a general effort to under-
stand transitions out of the Coulomb phase, induced by
perturbations.17–21 In particular, flat-band localization can be
viewed as a linearized version of the transition induced by
weak disorder in a frustrated magnet, between the Coulomb
phase and spin-glass order.20 Finally, we note recent studies
of Bose condensation in flat bands22 and of the combined
effects of disorder and interactions in the Falicov-Kimball
model on a lattice with a flat band.23 In Sec. II we define the
models we consider, discuss projection onto the flat band,
and set out a mapping between the flat-band localization
problem and random impedance networks, while in Sec. III
we present results from simulations.

II. MODELS AND THEORETICAL BACKGROUND

Several parallel terminologies have been used to describe
the tight-binding models we study here, which all involve a
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single nonzero hopping energy t between nearby sites la-
beled i at positions ri on a periodic lattice in d dimensions. In
informal terms, for each model the sites can be grouped into
clusters, labeled � ,� , . . ., in such a way that: �i� each site is
shared between two clusters; �ii� every pair of sites belong-
ing to a given cluster is linked by hopping; and �iii� there is
no hopping between sites from different clusters. A second
lattice appears naturally from this construction: it has its sites
located at the centers of the clusters of the first lattice and the
sites of the first lattice lie at the midpoints of bonds of the
second lattice. As described by Mielke1 using the language
of graph theory, if the second lattice is denoted by the graph
G�V ,E� with vertices V and edges E, then the first lattice is
the line graph L�G� of G, which has as its vertex set VL the
edge set E of G, and has edges EL between two vertices in VL

if and only if the corresponding edges in G share a vertex.
Our study is hence of tight-binding models on line graphs.
Alternatively, G is known as the simplex lattice24 or parent
lattice14 and L�G� is called its medial lattice. One distinction
within this class is important to us: for reasons indicated
below, we restrict ourselves to simplex lattices that are bipar-
tite and expect different behavior in the opposite case. We
note that some rather more general classes of tight-binding
models with flat bands have also been considered,25 which
we do not examine here.

A two-dimensional example of the class of lattices which
we are interested in is the square lattice with crossings, also
called the planar pyrochlore lattice, shown in Fig. 1. For this
the simplex lattice is a square lattice. A second two-
dimensional example is the kagome lattice,3 which has the
hexagonal lattice as its simplex lattice. A three-dimensional
case is the pyrochlore lattice,4 with the diamond lattice as its
simplex lattice; another is the octahedral lattice,14 with the
simple cubic lattice as its simplex lattice.

When specifying the tight-binding Hamiltonian H�0� for
the clean system it is convenient to include a constant term,
chosen so that the flat bands are located at energy zero. The
Hamiltonian then has elements

Hij
�0� = �t�1 + �ij� i, j � same cluster

0 otherwise.
� �1�

Its expectation value in a state with amplitudes �i can con-
veniently be written in the form

���H�0���	 = t

�
�


i��

�i�2
. �2�

Taking t�0, it is clear from Eq. �2� that the eigenvalues of
H�0� are non-negative. It is also evident that states having



i��

�i = 0 �3�

for all � and �� ��	�0 are eigenstates with energy zero.
Such states can be constructed on the lattices we study by
taking �i= �1 with alternating signs on a closed loop of
neighboring sites that includes exactly two sites from every
cluster visited by the loop and setting �i=0 at sites not lying
on the loop. �The construction with alternating signs requires
the closed loop to have even length. Since the loop can be
viewed as a walk on the simplex lattice, this property is
guaranteed provided the simplex lattice is bipartite, but not
otherwise.� These loops can be chosen to be finite and short:
for example, as squares on the planar pyrochlore lattice or as
hexagons on the kagome lattice. Translated copies of such
eigenstates form a band of zero-energy states, which is the
flat band we are concerned with.

In what follows, properties of the projection operator P
onto the zero-energy states play an important role. When a
band is separated by energy gaps from other bands, the real-
space matrix elements Pij decay exponentially at long dis-
tances as a function of separation �ri−r j� between sites.26

However, for models in the class we have defined �here it is
again crucial that the simplex lattice be bipartite�, the zero-
energy band touches a dispersive band at one or more points
in the Brillouin zone27 and Pij decays more slowly with
separation. For any specific lattice its form can be computed
explicitly from the eigenvectors of H�0� but to see the generic
long-distance properties it is better to move to a continuum
treatment. To this end, following discussions of the Coulomb
phase in dimer models15 and antiferromagnets,16 we first in-
troduce real-space unit vectors êi aligned along each bond i
of the simplex lattice, and all directed from one sublattice
�chosen as a matter of convention� toward the other. Then we
associate a d-component vector field B�ri� with a set of am-
plitudes �i, by defining

B�ri� = �iêi. �4�

The zero-energy condition, Eq. �3�, is also the condition that
the field B�ri� has zero lattice divergence at every site of the
simplex lattice. To understand the long-distance behavior of
P, we therefore consider the projection operator onto diver-
genceless fields that are functions of a continuous position
variable r. The reciprocal-space form of P is block diagonal
in wave vector q. On the lattice the blocks act on the space
of sites within a unit cell, while in the continuum they are
d�d matrices acting on the components of B, with the form

FIG. 1. The square lattice with crossings or planar pyrochlore
lattice. Filled circles denote lattice sites and lines represent hopping
matrix elements of magnitude t in H�0�.
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q2�lm − qlqm

q2 . �5�

In real space this yields

PR,R+r = cd
drlrm − r2�lm

rd+2 , �6�

where cd is a dimension-dependent constant. As advertised,
the projection operator falls off as r−d in d dimensions.

Returning to the tight-binding model, we introduce disor-
der as a site-diagonal random potential with matrix elements

Hij
�1� = �ijvi. �7�

The vi are independent, identically distributed random vari-
ables having zero mean and unit variance. Combining ingre-
dients, the localization problem we study has the Hamil-
tonian

H = H�0� + H�1� �8�

and we are interested in the weak disorder limit, obtained by
taking t→�.

Consider for H the density of states in energy E when
t	1. At �E�	1 it is similar to that of H�0�, but for �E�

O�1� it is dominated by the contribution from the disorder-
broadened flat band, which has energy width O�1�. We wish
to understand simplifications at large t in the eigenvectors of
H belonging to this band. Let ��	= ���	+ ���	 be such an
eigenvector, which we have separated into components that
obey P���	= ���	 and �1−P����	= ���	 and lie, respectively,
within and perpendicular to the space spanned by the flat
bands of the clean system. Because H�0����	=0, the eigen-
value equation E��	=H��	 implies

�E − H�1����	 = H�0����	 . �9�

Since we expect ��E−H�1����	�O�1�, we require ����	�
O�t−1� to ensure that �H�0����	�O�1� when t is large.
At leading order, Eq. �9� therefore simplifies to

�E − H�1�����	 = H�0����	 . �10�

To make a connection with random impedance networks,
note that P and �1−P� effect a lattice version of the Helm-
holtz decomposition: P projects onto lattice fields that are
solenoidal while 1−P projects onto lattice fields that are ir-
rotational. In consequence, H�0����	 can be expressed as the
lattice gradient of a potential defined at the sites of the sim-
plex lattice. Let � and � be the simplex lattice sites linked by
the simplex lattice bond i with êi directed from � to �. Then
there exist simplex site potentials �� such that for every i,

�i�H�0����	 = �� − ��. �11�

In addition

�i��E − H�1�����	 = �E − vi��i���	 �12�

and so with w���E�= �E−vi�−1 we have

�i���	 = w���E���� − ��� . �13�

Now Eq. �3� implies for every � that



�

w���E���� − ��� = 0, �14�

where the sum on � is over simplex lattice sites that are
nearest neighbors to �.

Equation �14� is also the equation that describes reso-
nances in an impedance network.11 It has nontrivial solutions
for �� only if E is an eigenvalue of H. In the impedance
network interpretation, it is Kirchoff’s law for current con-
servation at node � of the network, �� is the voltage at that
node, and w���E� is the complex conductance, or inverse
impedance, between nodes � and �. This impedance is fre-
quency dependent and the equation has nontrivial solutions
at the resonant frequencies, which are real if the network is
loss free. Such resonances have been studied for a binary
distribution of impedances on the square lattice by Jonck-
heere and Luck.11 In particular, these authors find from nu-
merical calculations that the electric fields associated with
resonant states, which correspond in our notation to the com-
bination �E−vi��i ���	, have a multifractal distribution. Their
conclusion is entirely consistent with our view of flat-band
localization, as being automatically critical because P is long
range. Moreover, this connection to flat-band localization
provides an explanation of why resonant states should ge-
nerically be critical for an impedance network in any number
of dimensions.

III. NUMERICAL RESULTS

To illustrate these ideas and study the approach to the
large-t limit, we have calculated eigenfunctions and eigen-
vectors for H on the planar pyrochlore lattice of Fig. 1. We
take the site potentials vi from a Gaussian distribution and
examine values of t up to 3�109. We diagonalize H for
square systems with periodic boundary conditions and side
length L in the range 34�L�80, in units of the nearest-
neighbor spacing.

The probability distribution P�s� of spacings s between
adjacent eigenvalues, measured in units of the mean spacing,
is a standard diagnostic for localization transitions.28,29 Me-
tallic and localized phases are identified by Wigner-Dyson
and Poisson distributions,30 respectively, while the critical
point is characterized by a distinct, universal distribution.29

We present in Fig. 2 our results for P�s�. These were ob-
tained using states from the central half of the flat band and
applying standard band-unfolding methods to compensate
for the energy dependence of the average density of states.
The data shown were calculated using t=3�109 but results
are essentially the same for any t103. Within the statistical
precision of the data, the behavior of P�s� is independent of
system size. It is apparent from this figure that the form of
P�s� is intermediate between those for Wigner-Dyson and
Poisson distributions, as expected in a system at a critical
point.

To probe the nature of eigenfunctions we have examined
the scaling with system size of averaged moments of the
probability density. More specifically, eigenfunction fluctua-
tions can be characterized by a set of generalized fractal
dimensions31 if disorder-averaged moments have the power-
law dependence,
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i

���i�2q�av = AqL−��q� �15�

on system size, where ��q� is related to the fractal dimension
by ��q�= �q−1�Dq and Aq is a constant. For uniformly ex-
tended states Dq=d and for localized states Dq=0 but for
critical states a nontrivial dependence of Dq on q is expected.
As is standard,31 we analyze multifractality via the spectrum
of singularity strengths f���, which is related to ��q� by a
Legendre transformation: f���=q�−��q� with q=��f���. It
has the interpretation that Lf��� is the measure of the set of
points i at which the probability density in an eigenstate
scales with system size as ��i�2L−�. We determine f���
using the procedure described in Ref. 32. The results are
shown in Fig. 3. The upper panel of this figure displays the
size dependence of our estimates for f��� at finite L, showing
convergence to the large-L limit. The lower panel demon-
strates that the form of f��� that results at large L is t inde-
pendent provided t is large.33 These final, large-L, large-t
data are well fitted by the parabola

f��� = d −
�� − �0�2

4��0 − d�
�16�

with d=2 and �0=2.37. Correspondingly, we find D2=1.27.
Fractal properties in generalized random matrix ensembles

depend on details of the model34 �for example, on disorder
strength in power-law random banded matrices10�. Similarly,
we expect fractal properties in weak-disorder flat-band local-
ization to vary with the choice of distribution for vi but we
have not explored that aspect.

In summary, these numerical results support our expecta-
tion that weak disorder in a tight-binding model with flat
bands should give rise to eigenstates that are critical, in the
sense of the Anderson localization transition.
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